MMAT 5010 Linear Analysis (2022-23): Homework 1. Deadline: 24 Sep 2022

Important Notice:

 \clubsuit The answer paper must be submitted before the deadline.

 \blacklozenge The answer paper MUST BE sent to the CU Blackboard. Please refer to the course web for details.

- 1. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be the normed spaces over the field \mathbb{K} . Let $T: X \to Y$ be a linear map from X to a Y, that is T satisfies the condition: T(sx + tx') = sTx + tTx'for all x, x' in X and $s, t \in \mathbb{K}$. For each $x \in X$, let $q(x) := \|x\|_X + \|Tx\|_Y$. Show that qis a norm function on X.
- 2. Let X be a normed space. Show that X is a Banach space if and only if the unit sphere $S := \{x \in X : ||x|| = 1\}$ of X is complete, that is, every Cauchy sequence (x_n) in S has the limit in S.
- 3. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be the normed spaces over the field K. The direct sum of X and Y, write $X \oplus Y$, is defined by $X \oplus Y := \{(x, y) : x \in X, y \in Y\}$ under the addition and the scalar multiplication: (x, y) + (x', y') := (x + x', y + y') and t(x, y) := (tx, ty)for $(x, y); (x', y') \in X \oplus Y$ and $t \in \mathbb{K}$. For each $(x, y) \in X \oplus Y$, let

$$q(x,y) := \|x\|_X + \|y\|_Y.$$

- (a) Show that q is a norm function on $X \oplus Y$.
- (b) Show that $X \oplus Y$ is a Banach space under the norm q if and only if X and Y both are Banach spaces.